Phospholipid synthesis in a membrane fraction associated with mitochondria.

نویسنده

  • J E Vance
چکیده

A crude rat liver mitochondrial fraction that was capable of the rapid, linked synthesis of phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho) labeled from [3-3H] serine has been fractionated. PtdSer synthase, PtdEtn methyltransferase, and CDP-choline:diacylglycerol cholinephosphotransferase activities were present in the crude mitochondrial preparation but were absent from highly purified mitochondria and could be attributed to the presence of a membrane fraction, X. Thus, previous claims of the mitochondrial location of some of these enzymes might be explained by the presence of fraction X in the mitochondrial preparation. Fraction X had many similarities to microsomes except that it sedimented with mitochondria (at 10,000 x g). However, the specific activities of PtdSer synthase and glucose-6-phosphate phosphatase in fraction X were almost twice that of microsomes, and the specific activities of CTP:phosphocholine cytidylyltransferase and NADPH:cytochrome c reductase in fraction X were much lower than in microsomes. The marker enzymes for mitochondria, Golgi apparatus, plasma membrane, lysosomes, and peroxisomes all had low activities in fraction X. Polyacrylamide gel electrophoresis revealed distinct differences, as well as similarities, among the proteins of fraction X, microsomes, and rough and smooth endoplasmic reticulum. The combined mitochondria-fraction X membranes can synthesize PtdSer, PtdEtn, and PtdCho from serine. Thus, fraction X in combination with mitochondria might be responsible for the observed compartmentalization of a serine-labeled pool of phospholipids previously identified (Vance, J. E., and Vance, D. E. (1986) J. Biol. Chem. 261, 4486-4491) and might be involved in the transfer of lipids between the endoplasmic reticulum and mitochondria.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phospholipid synthesis and exchange in castor bean endosperm homogenates.

Crude organelle preparations from castor bean (Ricinus communis L.) endosperm rapidly incorporate CDP-((14)C)choline and CDP-((14)C)-ethanolamine into phosphatidylcholine and phosphatidylethanolamine, respectively. Separation of organelles by sucrose density gradient centrifugation following incubation with these substrates demonstrated that most of the (14)C phospholipids thus formed were pres...

متن کامل

Phospholipid metabolism in plant mitochondria: submitochondrial sites of synthesis.

Intact mitochondria from the endosperm of castor bean were isolated on linear sucrose gradients. These mitochondria were ruptured and the membranes separated on discontinuous sucrose gradients into outer membrane, intact inner membrane, and ruptured inner membrane fractions. Each membrane fraction was examined for its capacity to synthesize phosphatidylglycerol, CDP-diglyceride, phosphatidylcho...

متن کامل

Phospholipid synthesis and exchange between rat liver microsomes and mitochondria in the presence of benzo(a)pyrene.

Benzo(a)pyrene injection increased the phospholipid content in membranes of rat liver mitochondria and microsomes. There was a large relative increase of phosphatidylcholine, especially in microsomes, as compared with normal liver. The quantity of phosphatidylethanolamine seemed not be affected and the other phospholipid classes decreased. In vivo [U-14C]glycerol incorporation into phospholipid...

متن کامل

Exchange of phospholipids between brain membranes in vitro.

1. When unlabelled mitochondria from guinea-pig brain were incubated with a (32)P-labelled microsomal fraction from brain there was a transfer of phospholipid to the mitochondria, which could not be accounted for by an aggregation of microsomes and mitochondria or an exchange with microsomes contaminating the mitochondria. Under similar circumstances there was a transfer of phospholipid from (3...

متن کامل

BTN1, the Saccharomyces cerevisiae homolog to the human Batten disease gene, is involved in phospholipid distribution

BTN1, the yeast homolog to human CLN3 (which is defective in Batten disease), has been implicated in the regulation of vacuolar pH, potentially by modulating vacuolar-type H(+)-ATPase (V-ATPase) activity. However, we report that Btn1p and the V-ATPase complex do not physically interact, suggesting that any influence that Btn1p has on V-ATPase is indirect. Because membrane lipid environment play...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 265 13  شماره 

صفحات  -

تاریخ انتشار 1990